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ABSTRACT The shade avoidance response is a set of developmental changes exhibited by plants to avoid
shading by competitors, and is an important model of adaptive plant plasticity. While the mechanisms of
sensing shading by other plants are well-known and appear conserved across plants, less is known about
the developmental mechanisms that result in the diverse array of morphological and phenological responses
to shading. This is particularly true for traits that appear later in plant development. Here we use a nested
association mapping (NAM) population of Arabidopsis thaliana to decipher the genetic architecture of the
shade avoidance response in late-vegetative and reproductive plants. We focused on four traits: bolting time,
rosette size, inflorescence growth rate, and inflorescence size, found plasticity in each trait in response to
shade, and detected 17 total QTL; at least one of which is a novel locus not previously identified for shade
responses in Arabidopsis. Using path analysis, we dissected each colocalizing QTL into direct effects on each
trait and indirect effects transmitted through direct effects on earlier developmental traits. Doing this separately
for each of the seven NAM populations in each environment, we discovered considerable heterogeneity among
the QTL effects across populations, suggesting allelic series at multiple QTL or interactions between QTL and
the genetic background or the environment. Our results provide insight into the development and variation in
shade avoidance responses in Arabidopsis, and emphasize the value of directly modeling the relationships
among traits when studying the genetics of complex developmental syndromes.
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INTRODUCTION1

Because plants are sessile organisms and require light for energy,2

their ability to monitor and adjust to their light environment is3

essential to their fitness (Schmid 1992; Gratani 2014). Consequently,4

plants have photoreceptors to sense changes in the light environ-5

ment, and have developmental and physiological responses to6

optimize fitness under non-optimal light conditions (Kami et al.7

2010). The shade avoidance response (SAR) is a characteristic suite8

of responses to the proximity of nearby plants in competition for9
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light, and is widely cited as a primary example of adaptive plastic- 10

ity (Schmitt et al. 2003; Keuskamp et al. 2010; Bongers et al. 2014). 11

Green plant tissues absorb red light and reflect far-red light, so 12

a change in the ratio of red to far-red light, called the red:far-red 13

ratio (R:FR), signals the presence of nearby vegetation and elicits a 14

SAR in receptive plants (Franklin and Whitelam 2005). The SAR is 15

widely cited as an example of adaptive plant plasticity because the 16

morphological and physiological changes are dramatic, and the 17

adaptive benefit has been demonstrated in multiple populations 18

and species (Morgan and Smith 1979; Dudley and Schmitt 1995; 19

Schmitt et al. 2003). The SAR also has detrimental effects on yield 20

in crops, and its genetics and management are important targets 21

for optimizing yield (Ballaré et al. 1997; Carriedo et al. 2016; Wille 22

et al. 2017). 23
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Although the SAR is generally triggered by light quality (i.e.1

R:FR ratio), the specific morphological changes caused by shade2

differ across tissues and developmental stages, and also depend on3

the persistence and intensity of the light quality signal (Casal 2012,4

2013). Typical SAR characteristics include changes in phenology,5

physiology and growth resulting in taller plants, but with reduced6

biomass, which helps a plant escape competition. Phenological7

changes usually include delayed germination, accelerated flower-8

ing, and accelerated seed set. Delaying germination allows a seed9

to optimize the light environment upon emergence when shading10

is temporary, while accelerating flowering is generally a strategy11

for cutting losses and making some seed when shading is persis-12

tent (Casal 2012). Elongated and more up-right organs – such as13

hypocotyls, petioles and stems – are common responses to reduced14

R:FR, and this response can help plants overtop neighbors and15

increase light capture (Casal 2012). However, not all organs display16

elongation, and adult plants often show other responses such as17

reduced branching and smaller biomass (Casal 2012; Carriedo et al.18

2016). These contrasting SAR characteristics suggest that distinct19

mechanisms mediate the SAR across plant development, and re-20

cent research suggests that there are separate regulatory pathways21

for the SAR between the seedling and adult life stages (Nozue22

et al. 2015). Differentiating the genetic mechanisms of the SAR23

among developmental stages is a central goal, as they remain less24

understood.25

Not only is there variation in shade effects across developmen-26

tal stages, but variation in the SAR is also observed across dif-27

ferent species and among populations within the same species.28

For instance, the timing of bud outgrowth in response to shade29

is accelerated in silver birch (Betula pendula), delayed in white30

clover (Trifolium repens), and not affected in Arabidopsis (Demotes-31

Mainard et al. 2016). Similarly, a population of Stellaria longipes32

from a prairie environment dramatically elongated stems in re-33

sponse to shading, while a population from an alpine environment34

showed only a slight increase (Alokam et al. 2002). These within35

and among-species differences are thought to be adaptive (Schmitt36

et al. 2003). For example, elongated stems may help Stellaria plants37

outcompete neighboring vegetation in a prairie, but may not be38

beneficial in areas that lack crowding and overtopping by other39

plants (i.e. alpine environments) (Alokam et al. 2002). Clinal vari-40

ation in other environmental variables, such as temperature and41

precipitation, have also been associated with variation in the SAR42

across Arabidopsis populations (Botto 2015). These results suggest43

that the SAR can evolve and that populations may harbor useful44

variation for genetically dissecting and manipulating the SAR in45

different species.46

Despite variability in the SAR among species, many genetic47

mechanisms involved in sensing and responding to shading by48

other plants appear to be conserved across species. The phy-49

tochromes have been established as a mediator of the SAR in50

Arabidopsis (Franklin et al. 2003a,b; Franklin and Whitelam 2005),51

sorghum (Kebrom et al. 2006), maize (Sheehan et al. 2007), and52

tomato (Weller et al. 2000; Schrager-Lavelle et al. 2016). There are53

also similar genetic and hormonal mechanisms that control axillary54

bud growth in response to shade for both Arabidopsis and crops.55

For example, shade repression of axillary bud growth is controlled56

by the transcription regulator TB1 in sorghum, and its homologs57

BRC1 and BRC2 in Arabidopsis (Carriedo et al. 2016). The plant hor-58

mones auxin, cytokinin, and strigolactone are known to regulate59

axillary bud growth in Arabidopsis and sorghum (Carriedo et al.60

2016). Auxin-related genes are upregulated in stem transcriptome61

profiles in tomato in shade conditions (Cagnola et al. 2012). Given62

the extensive genomic resources available in the model species 63

Arabidopsis, studies of the SAR in this species can rapidly identify 64

genes and mechanisms that could be useful for controlling the 65

SAR in crops. For instance, insight on phytochrome function from 66

Arabidopsis was used to repress the SAR in tobacco (Robson et al. 67

1996) and potato (Boccalandro et al. 2003), leading to increased 68

harvest index and tuber yield, respectively. 69

Extensive variation in the SAR has been reported for Arabidop- 70

sis. The SAR for hypocotyl elongation and flowering time showed 71

high genetic variation among 157 Arabidopsis accessions studied 72

by Botto (2002) (Botto and Smith 2002). Botto (2015) additionally 73

examined shade effects in 60 genotypes of Arabidopsis across 15 74

different populations and found that the shade plasticity for some 75

reproductive traits was significantly different across populations 76

and was correlated with environmental differences among popu- 77

lations (Botto 2015). The genetic basis of variation in several SAR 78

traits in Arabidopsis, including hypocotyl length, petiole length, 79

bolting time, and rosette diameter, has been studied by QTL map- 80

ping and GWAS (Jiménez-Gómez et al. 2010; Coluccio et al. 2011; 81

Filiault and Maloof 2012). Studies of natural variation can comple- 82

ment mutation experiments for discovering novel SAR genes. For 83

example, the circadian clock gene ELF3 was first implicated in the 84

SAR in Arabidopsis in a QTL mapping study (Jiménez-Gómez et al. 85

2010; Coluccio et al. 2011). 86

However, previous QTL mapping studies on the SAR in Ara- 87

bidopsis have been limited in several ways. First, only one QTL 88

mapping experiment has studied the SAR in adult plants (Jiménez- 89

Gómez et al. 2010). Second, most studies have been done in single 90

biparental populations, which harbor limited genetic diversity. 91

Third, existing studies have mapped QTL for each trait separately, 92

and have not taken into account the associations between traits. 93

This can limit power when multiple traits are correlated, and can be 94

misled by indirect effects transmitted from one trait to another trait 95

due to developmental and physiological relationships between 96

traits. For example, a higher leaf area index indirectly leads to in- 97

creases in yield due to higher levels of photosynthesis and carbon 98

assimilates for plant growth (Heuvelink et al. 2005). Weinig (2000) 99

showed that the light environment modulated elongation in vel- 100

vetleaf, and this has indirect effects on fecundity through biomass 101

(Weinig 2000). Fournier-Level et al. (2013) revealed that both ge- 102

netic background and planting location contribute to life history 103

variation, and that planting location affected indirect QTL effect 104

sizes (Fournier-Level et al. 2013). Accounting for trait relationships 105

in QTL studies can help describe the similarities and differences 106

among the underlying genetics of early and late developmental 107

SARs in this species. 108

We use a nested association mapping population (NAM) to char- 109

acterize the genetic architecture of the SAR in Arabidopsis thaliana 110

for four traits: bolting days, inflorescence growth, rosette biomass, 111

and inflorescence biomass (Yu et al. 2008). Compared to biparental 112

populations, our NAM population has higher genetic diversity, 113

which increases QTL mapping power and detects QTL that are 114

broadly important across populations. Surprisingly, we find that 115

while there is a shade effect, there is little genetic variation in 116

later developmental SAR compared to earlier developmental SAR. 117

However, we do find 17 SAR QTL among 4 traits, and evidence of 118

an allelic series for many of our QTL. Among these, we find QTL 119

on chromosomes 4 and 5 that colocalize for multiple phenotypes, 120

suggesting pleiotropy for later developmental SAR. To determine 121

if these QTL are truly pleiotropic, we estimate the direct and indi- 122

rect effects of colocalizing QTL on traits throughout developmental 123

time using path analysis. Because shading involves accelerated 124
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flowering, which in turn is associated with smaller plant size and1

biomass, our hypothesis is that QTL effects on later developmental2

traits (e.g. biomass) should primarily be indirect. We find that3

trait associations and direct QTL effects on later developmental4

traits vary across populations and environments. This suggests5

that pleiotropy depends on both the genetic background and envi-6

ronment. These results highlight the importance of an integrated7

view of the genotype-phenotype relationship and the need to not8

only account for genetics and environment, but also phenotype9

relationships among traits throughout time.10

MATERIALS AND METHODS11

Plant material12

We used two mapping populations to study the genetics of the13

shade avoidance response in A. thaliana: a nested association map-14

ping (NAM) population consisting of seven biparental populations15

with 1152 total recombinant inbred lines (RILs) (Brock et al. 202016

companion paper, G3/2020/401239), and a diversity panel consist-17

ing of ∼ 100 diverse accessions (Table S1). Col-0 (186AV) was the18

recurrent parent of all seven NAM populations. Blh-1 (180AV), Bur-19

0 (172AV), Cvi-0 (166AV), Ita-0 (157AV), Jea (25AV), Oy-0 (224AV),20

and Sha (236AV) were the alternative parents. F8 generation RILs21

were created through single-seed descent, selfing, and bulk mul-22

tiplication. We obtained seeds for each RIL from the Versailles23

Arabidopsis Stock Center, and the seeds for the diversity panel24

accessions from Magnus Nordborg.25

Growth conditions26

Seeds were stratified for four days at 4°C in 0.15% agar solution and27

then planted in 4x4-potted trays (East Jordan Plastics: EJP804-200)28

filled with Sungrow Sunshine Mix #1. To improve germination29

rates, soil surfaces were flattened with a custom tamper before30

planting seeds. 2 - 3 seeds of the same RIL were planted in the31

center of each pot. Each pot was thinned to one plant after one32

week.33

Plants were grown in the Controlled Environmental Facilities34

at UC Davis in five experiments from 05/13 - 08/15. Light was35

provided by fluorescent light bulbs at 100 µmol photosynthetic36

active radiation (PAR), and supplemented by LEDs with different37

red:far-red ratios (R:FR) to simulate sun (R:FR ratio > 1.0) and foliar38

shade (R:FR ratio ∼0.5) conditions (Franklin and Whitelam 2005).39

Daylength in both conditions was set to 16h light, 8h dark and the40

temperature set to 22°C. There were 3 shelves (blocks) for each41

treatment in each experiment, and in total between 4 - 10 replicates42

of each RIL per treatment grown over all experiments. Photo-43

synthetic active radiation (PAR) and R:FR were checked using a44

spectrophotometer at the start of each experiment to verify lighting45

and sun and shade conditions. Because shade affects germination46

rate, shade-treated plants were germinated in sun conditions (R:FR47

> 1.0) for approximately one week to ensure comparable germina-48

tion rates between sun and shade-treated plants.49

Trays were watered with 200 - 300 mL Hoagland solution and50

rotated 3 times per week. For each block, temperature and hu-51

midity were measured continuously using HOBO environmental52

loggers. Plants were sprayed to prevent and treat diseases and53

pests whenever necessary.54

Traits measurements55

Bolting time, inflorescence height, and dry rosette and inflores-56

cence biomass were measured on each plant. Plants were scored 357

times a week for bolting (BD, measured as days after planting). In-58

florescence height was measured from the base of the inflorescence59

to the tip of the main inflorescence, and was measured approxi- 60

mately right after being scored for bolting, and the first and second 61

weeks after bolting. Because not all inflorescence height measure- 62

ments were taken at the same time, we estimated the growth rate 63

of the main inflorescence (IG) by taking the difference in height 64

between the first and last inflorescence height measurements and 65

dividing by the number of days between the first measurement 66

and the last measurement. Whole rosettes and inflorescences were 67

harvested two weeks after bolting (immediately after the last inflo- 68

rescence height measurement), dried, and weighed to obtain dry 69

biomass (RB and IB, respectively for dry rosette and inflorescence 70

biomass). 71

Data were scanned for obviously erroneous data and measure- 72

ment error, which were excluded from the subsequent statistical 73

analyses. 74

Statistical analyses: QTL mapping 75

Traits were transformed using the Box-Cox procedure and sub- 76

sequently z-transformed to satisfy the linear model assumptions 77

of normality and constant variance (transformed data in File S1). 78

We estimated shade responses for each line with the follow mixed 79

linear model: 80

Pijkl = SHELFi + TRTj + RILk + RIL : TRTij + eijkl (1)

where P is the phenotype, SHELF refers to spatial block, TRT is 81

light treatment (sun or shade), RIL is the genotype (Recombinant 82

Inbred Line), RIL:TRT is the genotype-by-environment interaction, 83

and e is the error. SHELF and TRT were modeled as fixed effects, 84

while RIL and RIL:TRT modeled as random effects. We fit the 85

model as a Bayesian linear mixed model using the brms R package 86

(Buerkner 2017). We used the student family of residuals when fit- 87

ting the Bayesian mixed models to reduce the influence of potential 88

outliers. 89

We fit models separately for each of the seven populations to 90

estimate the percentage of total phenotypic variance explained 91

(PVE) by genotype main effect (G-PVE) and gene-environment 92

interactions (i.e. GxE-PVE) for each trait. PVE was calculated 93

by dividing the respective random effect variances by the total 94

phenotypic variance (i.e. the sum of the genetic variance, GxE 95

variance, and residual variance). We then reported the average 96

G-PVE and GxE-PVE over all populations for each trait. We also 97

defined the coefficient of genetic variation in plasticity (CV_p) 98

as the standard deviation of GxE for each trait standardized by 99

the absolute value of the population mean plasticity, which is an 100

alternative measure of the amount of genetic variation in plasticity 101

in a population. Plasticity in this case refers to the differences in the 102

genotype means between the simulated sun and shade conditions. 103

We estimated 95% credible intervals for the shelf fixed effects and 104

PVE estimates (Table S2) as the 2.5% and 97.5% quantiles of the 105

samples from its posterior distribution. 106

We used the posterior means of the line GxE effects as pheno- 107

types for QTL mapping (posterior means in File S2). QTL map- 108

ping was run using the GridLMM package (Runcie and Crawford 109

2019). GridLMM provides the flexibility of joint QTL mapping 110

in multi-parent populations using linear mixed models, and can 111

also prevent proximal contamination of markers, which improves 112

QTL mapping power (Lippert et al. 2011). We developed a forward 113

stepwise algorithm using GridLMM functions to fit multiple-QTL 114

models to our data. By adopting a stepwise approach, we gain 115

greater power to detect QTL by controlling for additional QTL 116

elsewhere in the genome. We first generated genotype probabil- 117

ities for all markers (obtained from Brock et al. 2020 companion 118
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paper, G3/2020/401239) using the R/QTL package (Broman et al.1

2003). We then performed QTL scans for each shade response2

trait using the Haley-Knott regression approach (Haley and Knott3

1992; Broman et al. 2003), including a random effect to account4

for genetic background effects based on genotypes at all mark-5

ers > 10cM from the testing marker. Since nearby markers were6

highly correlated, we ran QTL scans using a reduced set of 4647

markers by iteratively dropping pairs of markers with a correlation8

> 99% (full marker set in File S3). QTL models were run separately9

for each population. We combined results across the seven pop-10

ulations for joint QTL mapping by summing the log-likelihoods11

from each population at the testing marker, and then subtracting12

from this total the sum of log-likelihoods of null models fit to each13

population. This log-likelihood ratio was compared to a chi-sq14

distribution with 6 degrees of freedom for hypothesis testing. We15

generated a p-value threshold by permuting genotypes within each16

biparental population 1000 times (Cheng et al. 2010) and used the17

95% quantile of the largest -log10(p) values per permutation as the18

entry p-value threshold to control the type I error rate at α = 0.05.19

We estimated uncertainty in QTL positions using the full set of20

10,688 markers by calculating 95% confidence intervals for each21

QTL using an approach modeled on TASSEL’s stepwise regression22

method (Bradbury et al. 2007). Briefly, we determined confidence23

bounds around each peak marker by sequentially adding a nearby24

marker to the QTL model at a greater and greater distance to the25

QTL peak. We defined the confidence interval bounds as the near-26

est marker positions that resulted in the QTL peak’s p-value being27

≤ α. The only difference in our method relative to TASSEL is that28

we determined the confidence intervals on just the first confidence29

interval scan with no subsequent scans. These QTL confidence30

intervals were then annotated with known shade avoidance genes31

(combined list of genes from (Nozue et al. 2015; Sellaro et al. 2017)).32

Intervals lacking annotated genes are considered to be novel SAR33

QTL and are likely to contain novel SAR genes.34

To show that our pipeline gives results consistent with other35

methods, we repeated our analysis of the bolting day shade36

response (BD_SAR) with three other QTL mapping methods:37

GEMMA’s LMM (Zhou and Stephens 2012), TASSEL (Bradbury38

et al. 2007), and QTL IciMapping (Meng et al. 2015). All methods39

were run across all populations jointly. For GEMMA and TASSEL,40

we used the full set of 182,314 SNPs; for QTL IciMapping we used41

the full set of 10,668 markers (both obtained from Brock et al. 202042

companion paper, G3/2020/401239). Genotype, phenotype, co-43

variate, and annotation data used for these methods are in File44

S4-S10. For GEMMA, we used the default settings to generate the45

kinship matrix and to run the linear mixed-model. For TASSEL,46

we used the default settings to run the stepwise algorithm but47

limited the maximum number of markers in the stepwise model48

to 10. We used the JICIM method of QTL IciMapping with the49

default settings and 1,000 permutations. For GEMMA and TAS-50

SEL we included population as a covariate. All methods find QTL51

on chromosomes 4 and 5, but there are differences in other QTL52

found (Figure S1 and Figure S2 in Supplementary Material R1,53

and Table S3). These differences might arise due to the statistical54

method used to find QTL; GridLMM estimates a separate effect55

of each marker for each population using Haley-Knott regression,56

while GEMMA and TASSEL use a GWAS approach that treats each57

SNP as bi-allelic. Overall, while there are discrepancies between58

the QTL found between methods, we used GridLMM because we59

were interested in comparing marker effects between populations.60

GridLMM can also provide an advantageous combination of con-61

trolling for population structure, reducing proximal contamination,62

and increasing QTL mapping power using a stepwise algorithm 63

not found in any other QTL mapping software. 64

Statistical analyses: path analysis 65

We used a QTL-path analysis to assess whether QTL that are shared 66

between traits have separate direct effects on both traits, or if the 67

QTL effect on one trait can be explained as an indirect effect on a 68

trait expressed earlier in development. We built a path model to 69

explain the developmental relationships among traits based on the 70

time of measurement of each trait. We then fit a QTL-path model 71

by performing a QTL scan for each trait starting with all possible 72

paths from other traits included as fixed covariates. Trait order 73

was determined by collection time and developmental timing: BD 74

-> RB -> IG -> IB. The set of paths included for each later trait 75

consisted of both main effects and plasticity effects of all earlier 76

traits. 77

To create a final QTL-path model, we collected all colocaliz- 78

ing QTL from the QTL scans and built multi-QTL path models 79

separately for the sun and shade conditions using the R package 80

lavaan (Rossel 2012) with the multiple groups analysis (phenotype 81

data used for path analysis in File S11). We then took the difference 82

of QTL effects between environments to estimate the QTL effects 83

of the shade response. QTL effects reported in the path analysis 84

figures thus represent the differences in QTL effects between sun 85

and shade conditions, unless otherwise specified. We used a back- 86

ward elimination approach to reduce this model to only terms that 87

were significant in either treatment. For each trait, all QTL and 88

previous traits were included in the initial model as predictors. 89

Non-significant terms (p > 0.01) in both treatments were removed 90

through an iterative process: the term with the highest p-value 91

was sequentially dropped from the model and then the model was 92

re-fitted until all remaining predictor terms were significant (p < 93

0.01) for that trait in either treatment. Model fit was evaluated 94

according to the comparative fit index (CFI), the root mean square 95

error of approximation (RMSEA), and the standardized root mean 96

square residual (SRMR) (Hu and Bentler 1999). We then used me- 97

diation analysis in lavaan to estimate direct and indirect effects of 98

QTL. A description of the equations for the QTL-path scans and 99

the path analysis in lavaan, as well as an explanation of how direct 100

and indirect effects are estimated, can be found in File S12. 101

Data availability 102

Scripts and analyses are available at https://github.com/jkhta/sar_qtl. 103

The Bayesian mixed model and QTL mapping pipeline scripts 104

were run on the FARM cluster at UC Davis. Supplemental ma- 105

terial is available on Figshare. File S1 contains the transformed 106

and standardized phenotype data. File S2 contains the posterior 107

means for the genotype and GxE random effects used for QTL 108

mapping. File S3 contains the markers used for the GridLMM 109

analysis. File S4 contains the genotype file used for the GEMMA 110

analysis. File S5 contains the phenotypes (bolting day shade re- 111

sponses) used for the GEMMA analysis. File S6 contains the family 112

covariate used for the GEMMA analysis. File S7 contains the SNP 113

annotation file used for the GEMMA analysis. File S8 contains the 114

genotype file used for the TASSEL analysis. File S9 contains the 115

phenotypes (bolting day shade responses) and family covariate 116

data used for the TASSEL analysis. File S10 contains the phenotype 117

and genotype information used for the QTL IciMapping analysis. 118

File S11 contains the trait data in sun/shade conditions used for 119

path analysis. File S12 has descriptions on the equations used in 120

the QTL-path scans, and the estimation of direct and indirect ef- 121

fects in lavaan. Supplementary Material R1 contains Figures S1-S3. 122
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Table S1 contains the names of about 100 natural accessions grown1

in addition to the NAM population. Table S2 contains the 95%2

credible intervals for the shelf fixed effects, G-PVE, and GxE-PVE.3

Table S3 contains the significant markers detected for the bolting4

day shade response BLUPs using TASSEL. Table S4 contains the5

summary statistics from the fitted Bayesian mixed models. Table6

S5 contains the trait effects - estimated from the path models - for7

the different populations in the sun condition. Table S6 contains8

the trait effects - estimated from the path models - for the different9

populations in the shade condition. Table S7 contains the QTL10

found for the genotype random effects using GridLMM.11

RESULTS12

Variation in shade responses among populations13

To determine the underlying genetics of SAR variation across a14

broad panel of Arabidopsis accessions, we quantified the genetic15

variation in shade responses of four later-staged developmental16

traits in a NAM population consisting of 7 biparental populations17

and a total of 1152 recombinant inbred lines. Plants showed the18

classic SAR syndrome: compared to sun conditions, plants in19

simulated shade bolted faster (-0.58 sd decrease), had faster in-20

florescence growth (0.27 sd increase), and had lower dry rosette21

biomass (-0.78 sd decrease) and lower dry inflorescence biomass22

(-0.15 sd decrease) (Table 1).23

Overall, the variance in shade responses among genotypes was24

fairly small, with GxE-PVE ranging between 1.27% - 5.15%, which25

is an order of magnitude lower than the variances in genetic main26

effects, which ranged between 13.81% - 52.04% (Table S4). How-27

ever, coefficients of genetic variation in plasticity were moderate28

to large, ranging from 12% to 1596% (Table 1). We also estimated29

small GxE variances among the diversity panel, with GxE-PVE30

ranging between 0.39% - 4.94% (Table S4).31

Trait Intercept Plasticity CV_p

BD 0.57 (0.46 - 0.67) -0.58 (-0.65 - -0.52) 0.12 (0.06 - 0.19)

IG 0.02 (-0.11 - 0.15) 0.27 (0.19 - 0.36) 1.57 (0.21 - 5.71)

RB 0.86 (0.72 - 0.99) -0.78 (-0.86 - -0.7) 0.15 (0.09 - 0.24)

IB 0.38 (0.26 - 0.51) -0.15 (-0.23 - -0.07) 15.96 (0.63 - 20.24)

n Table 1 Posterior means of the intercept and treatment fixed
effects (Plasticity), and the coefficient of genetic variation for
plasticity (CV_p = σGxE/|µPlasticity|) averaged over all popula-
tions for each trait. Values in parentheses next to each posterior
mean are the 95% credible intervals for the means. BD, bolting
days; IG, inflorescence growth; RB, dry rosette biomass; IB, dry
inflorescence biomass.

Additive QTL32

To determine the genetic architecture underlying SAR variation,33

we estimated shade responses for each line for each of the four34

traits (BD_SAR, RB_SAR, IG_SAR, and IB_SAR) and used these35

estimates as phenotypes for QTL mapping. We detected 17 SAR36

QTL across all shade response traits, with 2 - 8 QTL per trait (Table37

2). Interestingly, we detect the most QTL for the bolting day shade38

response (BD_SAR) (8 QTL) and the least for dry inflorescence39

biomass shade response (IB_SAR) (2 QTL), even though the GxE-40

PVE for BD (1.27%) is lower than for IB (5.15%). Our QTL mapping41

results suggest that the genetic architecture underlying the SAR 42

for later developmental shade responses is polygenic. 43

Most SAR QTL were found on chromosomes 4 and 5, and four 44

QTL confidence intervals overlapped for multiple traits, suggest- 45

ing pleiotropy. A region of ≈ 500, 000 bp on the top of chromo- 46

some 4 (SAR4_1, around 41,028 bp) was associated with BD_SAR, 47

IB_SAR, and RB_SAR, and explained between 3.25% - 10.98% of the 48

variation in the SAR found in this population (Table 2). A region of 49

≈ 1, 500, 000 bp in the middle of chromosome 4 (SAR4_2, around 50

8,938,713 bp) was associated with the BD_SAR and RB_SAR. A re- 51

gion on the top of chromosome 5 (SAR5_1, between 3,000,000 and 52

5,000,000 bp) was associated with all four shade response traits, 53

and explained between 3.72% - 4.68% of the variation among traits. 54

A region at the end of chromosome 5 (SAR5_2, around 25,961,748 55

bp) was detected for BD_SAR and RB_SAR, and explained 1.36% 56

- 2.07% of the variation. Not all SAR QTL were associated with 57

multiple traits: markers m_2_11683361 and m_4_16640333 were 58

detected only for IG_SAR. This suggests that there are both unique 59

and shared aspects of genetic architecture between later develop- 60

mental traits in the SAR. 61

Evidence for allelic series 62

One of the advantages of a NAM population is that the effect 63

sizes of QTL can be compared across populations. We found clear 64

evidence of multiple functionally distinct alleles at several QTL 65

(Figure 1). For example, at BD_SAR4_1, 3 parents contributed 66

alleles that increased BD_SAR relative to Col-0, 2 contributed al- 67

leles that decreased BD_SAR relative to Col-0, and the remaining 68

parents contributed alleles that were similar to Col-0. 69

At other QTL (e.g. BD_SAR5_1), only one or two parents con- 70

tributed an allele that differed significantly from the Col-0 common 71

reference (Figure S3 in Supplementary Material R1). We did not 72

observe any QTL where the Col-0 allele was different from every 73

other parent. 74

Gene annotation 75

We annotated each QTL region using a list of genes previously 76

associated with the SAR in Arabidopsis from Nozue et al. (2015) 77

(Nozue et al. 2015) and Sellaro et al. (2017) (Sellaro et al. 2017), and 78

listed the number of SAR genes under each QTL (Table 2). Many 79

of these QTL have candidate genes that have been implicated in 80

the mechanism of the SAR through mutant knockouts; however, 81

several have not been shown to vary among natural accessions for 82

the SAR. Additionally, we found 1 SAR QTL that does not contain 83

any previously identified SAR genes: IG_SAR2_1. This region 84

represents a novel SAR QTL, and may provide new insight into 85

the mechanisms of this plasticity. 86

Path analysis 87

Next, we used QTL-path analysis to determine if QTL effects on 88

later-staged traits could be explained as indirect effects caused by 89

direct effects of the QTL on earlier traits (in each environment), or 90

earlier shade responses (differences between environments). QTL- 91

path analysis identified a slightly different set of QTL (Figure 2B) 92

as compared to the non-path analysis (Figure 2A). When mapping 93

with earlier traits and shade responses as covariates (Figure 2B), 94

we detected similar QTL on top of chromosomes 4 (for BD_SAR) 95

and chromosome 5 (BD_SAR, IG_SAR, IB_SAR) as compared to 96

the single-trait analyses (Figure 2A). However, the QTL on the top 97

of chromosome 4 is no longer significant for IB_SAR and RB_SAR, 98

and the QTL in the middle of chromosome 4, on the top of chromo- 99

some 5, and at the end of chromosome 5 are no longer significant 100

5



Trait QTL SNP PVE QTL Marker Chromosome Left Bound Right Bound # Genes

BD_SAR BD_SAR1_1 4.71 m_1_28847340 1 m_1_28607852 m_1_29478919 3

BD_SAR BD_SAR1_2 3.16 m_1_29478919 1 m_1_29400200 m_1_29897126 3

BD_SAR BD_SAR3_1 1.08 m_3_8066460 3 m_3_8040793 m_3_8658987 6

BD_SAR BD_SAR4_1 10.98 m_4_41028 4 m_4_41028 m_4_527682 2

BD_SAR BD_SAR4_2 2.00 m_4_9240644 4 m_4_7937660 m_4_9455527 9

BD_SAR BD_SAR5_1 4.68 m_5_3142427 5 m_5_3062640 m_5_3475211 1

BD_SAR BD_SAR5_2 1.37 m_5_7484984 5 m_5_7063023 m_5_8277645 3

BD_SAR BD_SAR5_3 1.36 m_5_25961748 5 m_5_25950815 m_5_26346630 2

IG_SAR IG_SAR2_1 2.07 m_2_11683361 2 m_2_11607434 m_2_12272151 0

IG_SAR IG_SAR4_1 1.36 m_4_16640333 4 m_4_16212324 m_4_17289054 8

IG_SAR IG_SAR5_1 3.72 m_5_4647184 5 m_5_3799350 m_5_5130837 7

IB_SAR IB_SAR4_1 3.25 m_4_41028 4 m_4_41028 m_4_527682 2

IB_SAR IB_SAR5_1 3.80 m_5_4110711 5 m_5_3799350 m_5_5018484 7

RB_SAR RB_SAR4_1 6.32 m_4_41028 4 m_4_41028 m_4_527682 2

RB_SAR RB_SAR4_2 2.14 m_4_8938713 4 m_4_8504098 m_4_9455527 7

RB_SAR RB_SAR5_1 3.92 m_5_3142427 5 m_5_3062640 m_5_4251866 6

RB_SAR RB_SAR5_2 2.07 m_5_25961748 5 m_5_25637221 m_5_26182104 2

n Table 2 Quantitative trait loci (QTL) for the shade responses of each trait. SNP PVE, percent variance explained
for the QTL; Left Bound, left marker of the 95% confidence interval; Right Bound, right marker of the 95% confidence
interval. # Genes, number of annotated genes found for QTL. BD_SAR, bolting days shade response; IG_SAR, inflores-
cence growth shade response; IB_SAR, dry inflorescence biomass shade response. RB_SAR, dry rosette biomass shade
response.

for RB_SAR. These results suggest that these QTL have indirect1

effects on IB_SAR and RB_SAR.2

To determine if QTL for later-development traits could be3

explained as indirect effects of colocalized QTL for earlier-4

development traits, we quantified the direct and indirect effects of5

each QTL. We modeled QTL effects in sun and shade conditions6

separately, and then estimated the difference in their effects be-7

tween sun and shade to determine the effect on shade responses.8

We then used path analysis to compare the magnitudes of direct9

and indirect QTL effects among the seven RIL populations (File10

S12). Fit indices for our models implied adequate fits to the data11

(average CFI > 0.97, average RMSEA < 0.08, and average SRMR <12

0.08 for all models). A conceptual illustration of the path models is13

shown in Figure 3.14

We treated the multiple QTL found on the top of chromosomes 515

for the different shade responses as a single QTL region in our path16

analysis. This is because the confidence bounds for RB_SAR5_117

overlap with the confidence bounds for BD_SAR5_1, IG_SAR5_1,18

and IB_SAR5_1.19

Most colocalizing QTL had significant effects in only a subset of20

the populations (Figure 4). For SAR4_1, only populations created21

with Blh-1, Ita-0, Jea, and Sha showed differences in QTL effects22

between sun and shade conditions. In the Blh-1 population we23

observed a positive direct QTL effect on the response to shade for24

BD_SAR; for the Bur-0 population, however, the direct effect of25

SAR4_1 was non-significant. In later developmental traits, indirect26

effects for SAR4_1 were non-zero in some, but not all, populations.27

For example, indirect effects of SAR4_1 on RB_SAR and IB_SAR28

were positive in the Blh-1, Ita-0, Jea, and Sha populations. 29

For SAR4_2, we observed direct effects on BD_SAR and 30

RB_SAR, but only indirect effects on IG_SAR and IB_SAR. In con- 31

trast, SAR5_1 shows more direct effects on later developmental 32

traits; including negative direct effects on RB_SAR and IG_SAR in 33

the Blh-1, Ita-0, and Sha populations. Lastly, SAR5_2 had direct 34

effects on IG_SAR for the Oy-0 population, and indirect effects 35

on RB_SAR and IB_SAR. Interestingly, though we do not detect 36

SAR5_2 for IG_SAR in our QTL mapping (Figure 2A), we find that 37

SAR5_2 has direct effects on IG_SAR (Figure 4); this discrepancy 38

might be due to the more stringent significance thresholds in our 39

QTL mapping method compared to our path analysis modeling. 40

These differences in direct and indirect QTL effects across pop- 41

ulations potentially arise due to different trait and QTL effects in 42

different environments. For instance, BD generally had a larger 43

effect on RB in shade conditions than in sun conditions across 44

populations (Table S5 and Table S6). BD effects on RB (RB ∼ BD) 45

ranged between 0.10 - 0.73 in sun and between 0.11 - 0.84 in shade. 46

FRI and FLC may underlie the QTL on top of chromosomes 4 and 47

5 48

We detected strong QTL on top of chromosomes 4 (SAR4_1) and 49

5 (SAR5_1) for multiple shade response traits, including bolting 50

time main effects (averaged over the two environments) (Table S7). 51

These QTL overlap the major flowering repressor genes FRIGIDA 52

(FRI) and FLOWERING LOCUS C (FLC), respectively. In low R:FR 53

conditions, flowering is known to be accelerated because the re- 54

pression of the floral transition by FRI and FLC is bypassed (Wol- 55
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Figure 1 Allelic series among selected SAR QTL.
% changes in plasticity relative to the Col-0 allele (allelic-specific change in plasticity / average plasticity) are plotted for selected SAR QTL.
Each panel represents a different SAR QTL (panel title). Each bar represents the effect of the non-Col-0 allele in one of the seven different
biparental populations. Blh-1, Blh-1 x Col-0; Bur-0, Bur-0 x Col-0; Cvi-0, Cvi-0 x Col-0; Ita-0, Ita-0 x Col-0; Jea, Jea x Col-0; Oy-0, Oy-0 x
Col-0; Sha, Sha x Col-0. Error bars represent one standard error of the estimated allele substitution effect.

lenberg et al. 2008). Therefore, FRI and FLC are likely candidate1

genes for SAR4_1 and SAR5_1.2

However, while FRI and FLC are within SAR4_1 and SAR5_1,3

respectively, the 95% confidence intervals for these QTL span sev-4

eral Mb, so other loci in these regions may also be involved in5

these populations. On the other hand, since FRI and FLC have6

been extensively studied in Arabidopsis, the alleles of these genes7

have previously been characterized in the majority of the NAM8

parents in our study. Therefore, if FRI and FLC are the major causal9

genes underlying these QTL, the effect sizes and directions across10

populations should follow predictable patterns.11

For instance, Col-0, Cvi-0, and Oy-0 have a non-functional FRI12

allele, while Blh-1, Bur-0, Ita-0, and Sha have a functional FRI allele13

(Lovell et al. 2013). Consequently, if FRI was the main driver of14

variation at the BD4_1 QTL, we expect that the QTL effects on15

BD to be close to zero for the Cvi-0 and Oy-0 alleles, and positive16

for the Blh-1, Bur-0, Ita-0, and Sha alleles. We find that the Cvi-017

and Oy-0 alleles do not delay bolting (QTL effect close to 0), while18

the Blh-1, Bur-0, Ita-0, and Sha alleles delay bolting (positive QTL19

effect) (Figure 5A). These results suggest that variation at FRI is20

the main driver of variation at the BD4_1 QTL.21

Similarly, Col-0 and Blh-1 have a functional FLC allele while Bur-22

0 and Sha have either a weak or non-functional FLC allele (Gazzani23

et al. 2003; Werner et al. 2005; Simon et al. 2008). Consequently,24

we expect QTL effects at BD5_1 on BD to be close to 0 for the25

Blh-1 allele, and to be negative for the Bur-0, and Sha alleles. We 26

find that the Blh-1 allele only slightly delays bolting (positive QTL 27

effect close to 0), while the Bur-0 and Sha alleles accelerate bolting 28

(negative QTL effect) (Figure 5B). These results then suggest that 29

FLC is the main driver of variation at the BD5_2 QTL. 30

DISCUSSION 31

General findings 32

We used a nested association mapping (NAM) population to inves- 33

tigate the diversity and genetic basis of variation in developmental 34

responses to shade in Arabidopsis thaliana. Our study is the first 35

in Arabidopsis to search for quantitative trait loci (QTL) for the 36

shade responses of several late-development traits, including in- 37

florescence growth (IG), rosette biomass (RB), and inflorescence 38

biomass (IB), and includes a much greater sampling of genetic 39

diversity than previous QTL mapping studies of the shade avoid- 40

ance response (SAR) in this species (Jiménez-Gómez et al. 2010; 41

Coluccio et al. 2011). Because of the large size of our study, the 42

power of the NAM population, and the assessment of new SAR 43

traits, we find at least one novel QTL that may be useful for future 44

fine-mapping studies to discover genes involved in SAR regula- 45

tion. Of the 17 SAR QTL we detect, only a few overlap with those 46

found by Jiménez-Gómez et al. (2011), who also measured the 47

SAR for later developmental traits. Similar to Jiménez-Gómez et 48

al. (2011), we detect QTL near the end of chromosome 5. However, 49

7



Figure 2 GBS-based single nucleotide polymorphism linkage map of Arabidopsis thaliana. Roughly 10,668 markers are distributed
across 5 chromosomes. (A) Additive quantitative trait loci (QTL) detected without earlier traits as covariates and (B) with earlier traits
as covariates. 95% confidence bounds for each QTL are also shown. Overlapping confidence interval bounds suggest colocalization
of QTL. BD_SAR, bolting days shade response; RB_SAR, dry rosette biomass shade response; IG_SAR, inflorescence growth shade
response; IB_SAR, dry inflorescence biomass shade response.

we also detect QTL on chromosome 1, on chromosome 4, and on1

top of chromosome 5 that were not detected by Jiménez-Gómez et2

al. (2011). This might be due to the greater genetic variation in the3

NAM population compared to the Bay-0 x Sha population, but the4

differences in detected QTL might also be due to the differences5

in the measures used for the shade responses. Jiménez-Gómez et6

al. (2011) used subtraction and residual indices on untransformed7

data, while we used genotype plasticity estimated from mixed8

models on transformed data. These discrepencies: the accessions9

that are represented by the RIL populations, the measure used10

as the SAR, and the use of untransformed or transformed data,11

could lead to the contrast in QTL profiles seen between studies. We12

also use path analysis to determine the mechanisms of pleiotropy13

among QTL, and discovered that some QTL effects on later de-14

velopment can be explained as effects on earlier development.15

Fournier-Level et al. (2013) also reported increased indirect QTL16

effects on later developmental traits (Fournier-Level et al. 2013).17

However, this depends on the genetic background and environ-18

ment. Overall, our work describes how foliar shade and genetics19

influence traits across developmental time.20

Magnitudes of genetic variation in traits and trait plasticity21

Our ability to detect QTL depends on the percentage of phenotypic22

variation that is due to genetic variation, which can be quantified23

by the percent variance explained (PVE) statistic. We find that vari-24

ation in the SAR (GxE) among our NAM lines explained very little25

of the overall variation in any of the traits we measured (GxE-PVE 26

ranged between 1.27% - 5.15%). This is an order of magnitude 27

lower than the amount of variation explained by genotype main 28

effects (G-PVE ranged between 13.81% - 52.04%), and also much 29

lower than the amount of residual, or unexplained variation (E- 30

PVE, which ranged between 46.69% - 81.04%, Table S4). We also 31

observed lower GxE-PVE among our traits in this NAM popu- 32

lation compared to the ∼ 15% GxE-PVE observed for hypocotyl 33

elongation in a panel of 180 Arabidopsis accessions (Filiault and Mal- 34

oof 2012). The low GxE-PVE was not a result of limited diversity 35

among the eight NAM parents, as we observed similar GxE-PVE 36

(< 5% across all traits) in an diversity panel of ∼100 accessions. 37

This suggests lower variation in how Arabidopsis accessions re- 38

spond to shade during later development when compared to the 39

shade response in earlier development. Dechaine et al. (2014) also 40

observed higher GxE variation for early internode elongation com- 41

pared to later internode elongation in Brassica rapa, suggesting that 42

decreased GxE variation for later developmental traits is prevalent 43

across multiple species. However, differences in chambers and 44

lighting conditions compared to Filiault and Maloof (2012) could 45

also contribute to differences in GxE-PVE (Filiault and Maloof 46

2012). 47

However, as a measure of the magnitude of plasticity varia- 48

tion, GxE-PVE can be misleading if the variation attributable to 49

genotype main effects (G-PVE) is large (as this contributes to the 50

total variation independently of GxE). We therefore also report 51

8 | Ta et al.



Figure 3 Representation of the fitted path models for sun and shade conditions. Directed arrows represent direct effects. The numbers
within the arrows are the number of significant associations across populations (p < 0.01). BD, bolting days; IG, inflorescence growth;
RB, dry rosette biomass; IB, dry inflorescence biomass. (A) Number of significant path effects in the simulated sun environment. (B)
Number of significant path effects in the simulated shade environment. SAR4_1, the QTL at the top of chromosome 4 that colocalized
for multiple traits. SAR4_2, the QTL in the middle of chromosome 4. SAR5_1, the QTL at the top of chromosome 5. SAR5_2, the QTL at
the end of chromosome 5.

the coefficient of genetic variation in plasticity (CV_p) as a metric1

of the magnitude of gene-environment interactions. CV_p com-2

pares the genetic variation in plasticity to the average plasticity 3

across the populations. By this metric, traits for which some lines 4

9



Figure 4 Direct and indirect effects of colocalizing quantitative trait loci (QTL) across populations and traits. Each panel represents a
different shade response, going from earlier development (left) to later development (right). The y-axis depicts the different biparental
populations, denoted by the non-recurrent parent of the biparental population. Blh-1, Blh-1 x Col-0; Bur-0, Bur-0 x Col-0; Cvi-0, Cvi-0 x
Col-0; Ita-0, Ita-0 x Col-0; Jea, Jea x Col-0; Oy-0, Oy-0 x Col-0; Sha, Sha x Col-0. Direct effects are in orange while indirect effects are in
teal. Each point represents the estimated QTL effect and the bars represent one standard error of the mean. Non-significant direct effects
are not shown; consequently, downstream indirect effects from non-significant direct effects are not shown. BD_SAR, bolting days
shade response; RB_SAR, dry rosette biomass shade response; IG_SAR, inflorescence growth shade response; IB_SAR, dry inflorescence
biomass shade response. (A) QTL effects for SAR4_1, the QTL at the top of chromosome 4 that colocalized for multiple traits. (B) QTL
effects for SAR4_2, the QTL in the middle of chromosome 4. (C) QTL effects for SAR5_1, the QTL at the top of chromosome 5. (D) QTL
effects for SAR5_2, the QTL at the end of chromosome 5.

respond moderately to shade while others do not may be scored1

as showing higher genetic variation in plasticity than traits where2

all lines show strong plasticity, but vary in their magnitude. By the3

CV_p statistic, we observed considerable variation in the SAR of4

our traits (CV_p ranged between 12%-1596%).5

Genetic diversity at key QTL6

By using a multi-parent population, we were able to compare the7

effects of the same QTL across different donors. Our results pro-8

vide evidence of allelic series for many of our SAR QTL. Allelic9

series have previously been observed in Arabidopsis for flowering10

time (Salomé et al. 2011) and seed dormancy (Kerdaffrec et al. 2016),11

and allelic variation has also been described for traits in response12

to shade. McNellis and colleagues (1994) described different allelic13

classes of cop1 mutants and their effects on hypocotyl elongation14

in both simulated canopy shade and end-of-day far-red light treat-15

ments (McNellis et al. 1994). Previous QTL mapping of the SAR16

in seedlings and adult plants have found two distinct alleles of 17

ELF3 that regulate hypocotyl elongation and bolting date in re- 18

sponse to shade (Jiménez-Gómez et al. 2010; Coluccio et al. 2011). 19

Similar to Jiménez-Gómez and colleagues (2011), we find different 20

alleles for bolting time in response to shade as well as other later 21

developmental shade responses. In our population, however, we 22

detect more than two functionally distinct alleles for multiple QTL 23

across all of our traits. The alleles vary in effect sizes, from small 24

to moderate, and while most alleles change the plasticity less than 25

|15%|, some alleles change plasticity as much as |80%|. This 26

is similar to the magnitudes of the effects of polymorphisms on 27

the shade response in genes like COP1 and ELF3 (McNellis et al. 28

1994; Jiménez-Gómez et al. 2010). In comparison, allelic effects on 29

BD main effects were much higher (Table 1 and Figure 5), with 30

alleles changing the average BD by as much as 0.95/0.57 = 163%. 31

Our results suggest that while the range of allelic effects and their 32

effect sizes on the SAR are small-to-moderate, allelic series are still 33
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Figure 5 Effects of the BD4_1 and BD5_1 QTL for BD across populations. BD4_1 covers FRI and BD5_1 covers FLC. QTL effects rela-
tive to the Col-0 allele are plotted. Allelic state is either functional (F), non-functional (NF), unknown (?), or weak (W). Symbols next
to allelic states represent the references where the information was collected: * (Lovell et al. 2013); # (Simon et al. 2008); + (Werner et al.
2005). Bars represent one standard error of the estimated effect of the non-Col-0 allele.

important for variation in the SAR.1

An allelic series can be caused by several possible mechanisms.2

1) Multiple functionally distinct alleles may be present at the same3

gene among the 8 NAM parents, such as strong, weak, and non-4

functional versions of the same gene. 2) The causal variants in5

each of the 7 NAM families may reside in different genes, but we6

are unable to resolve multiple QTL due to the limited mapping7

resolutions within each family (our average QTL width was 0.828

Mb). 3) Even if there are only two functionally distinct alleles at the9

locus, the average effect of an allele may differ among the NAM10

families due to differences in genetic background, such as epistatic11

interactions with variants at other regions of the genome.12

Distinguishing among these alternative models will require fine-13

mapping of each QTL across the NAM families and is beyond the14

scope of this study. However, our path analysis of the relationships15

among QTL and traits provides evidence that genetic background16

effects may be important. We observed several cases of colocalizing17

QTL among multiple traits, including QTL on chromosomes 418

(SAR4_1) and 5 (SAR5_1 and SAR5_2). Using path analysis, we19

demonstrated that at least some of the QTL on later traits could20

be explained as indirect effects of the QTL effects on earlier traits21

during development. However, the breakdown between direct22

and indirect QTL effects varied among populations and between23

the sun and shade environments. If the functional relationships24

among traits vary among populations, then even if a QTL has the25

same effect on an early developmental trait among populations,26

the indirect effect of the QTL on a later trait may vary. This would27

then appear as an allelic series for the later trait. In this study,28

we only measured four later-development traits. Had we been29

able to observe many more traits throughout development, we30

would have been able to further characterize colocalizing QTL to31

distinguish allelic series of direct effects from allelic series that are32

the result of different indirect effects through trait relationships.33

FRI and FLC as candidate genes 34

We found two colocalizing QTL on chromosomes 4 and 5 (SAR4_1 35

and SAR5_1) for multiple shade responses and provided evidence 36

that FRI and FLC are the drivers of variation at these loci. FRI 37

and FLC are flowering repressor genes that control the initiation 38

of flowering, and previous studies have estimated that they are 39

responsible for over 70% of natural variation in flowering time in 40

Arabidopsis (Lempe et al. 2005; Shindo et al. 2005). However, under 41

shade conditions, the effects of FRI and FLC are bypassed and 42

flowering is accelerated (Wollenberg et al. 2008). Because of the 43

association of FRI and FLC with accelerated flowering in shade, 44

as well as the correlations of flowering time with plant size and 45

inflorescence height (Mitchell-Olds 1996; Gnan et al. 2017), it is not 46

surprising that we detect loci that overlap with FRI and FLC for 47

our traits since our populations carry functionally distinct alleles 48

of both genes (Werner et al. 2005; Simon et al. 2008; Lovell et al. 49

2013). 50

However, this logic suggests that SAR4_1 and SAR5_1 should 51

only affect the later developmental traits indirectly through its 52

effects on bolting time. But this is not supported by our results. 53

SAR4_1 and SAR5_1 have direct effects on rosette biomass and 54

inflorescence growth in some populations, even after correcting 55

for flowering time (Figure 4), indicating that FRI and FLC directly 56

influence variation in other traits besides flowering. Consistent 57

with these results, Deng et al. (2011) showed that FLC binds to 58

genes that regulate vegetative development (e.g. SPL15 and SPL3) 59

in addition to genes involved in the floral transition and floral 60

patterning pathways (Deng et al. 2011). Similarly, allelic variation 61

in FRI has pleiotropic effects on growth rate, flowering time, and 62

water-use efficiency (McKay et al. 2003, 2008; Lovell et al. 2013). 63

However, another possibility is that the effect of bolting time on 64

later developmental traits is not entirely linear, and our path anal- 65

ysis only accounts for the linear relationship between traits. 66
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Future work1

The SAR is a widely studied example of plant plasticity, and has2

important implications in plant breeding and agriculture due to3

its negative effects on yield. Using natural variation to identify4

important loci for the SAR can help identify genes that both im-5

prove our understanding of the mechanisms underlying the SAR6

and may attenuate the SAR to improve yield in crops. Our study7

provides insight into the genetic architecture of the SAR in adult8

plants, and found at least one novel SAR locus. The loci that we9

describe represent opportunities for future fine-mapping studies10

to identify new casual variants. Furthermore, several of the pre-11

viously identified genes located within our other SAR QTL have12

not been implicated in the natural variation of the SAR and may13

be worth further study.14

Our path analysis results also show a complex, temporal el-15

ement to the underlying genetic architecture of the SAR, where16

QTL directly affect earlier – but not later – developmental traits.17

For instance, SAR4_2 had direct effects on the shade responses18

of BD and RB but not IG and IB. An intriguing future direction19

would be to investigate the temporal dynamics of the SAR devel-20

opment in mature plants. Shade effects on hypocotyl elongation21

in response to shade are detectable within hours (Cole et al. 2011).22

Our traits were measured over days or weeks so we could not23

measure short time-scale effects. However, the SAR in adult plants24

may be amenable to high-throughput phenotyping studies, which25

could capture genetic changes at hourly (or even finer) time-scales.26

Numerous studies have used imaging pipelines and time-series27

data to capture the genetic architecture of plant growth (Zhang28

et al. 2017; Knoch et al. 2020), and studies that leverage the same29

technology to study the genetic architecture of plant plasticity over30

time are emerging (Honsdorf et al. 2014; Marchadier et al. 2019).31

The SAR can thus serve as a system for future high-throughput32

phenotyping studies to expand our understanding of natural vari-33

ation in a plastic and adaptive trait throughout time.34
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